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Abstract

In this paper, we develop an LA-module over LA-ring to a new concept namely LA-semimodule
over LA-semiring. Let S be a non-empty set with two binary operations "+" and "∗". Set S
is called a left almost semiring (LA-semiring) if (S,+) is an LA-semigroup, (S, ∗) is an LA-
semigroup and satisfying left and right distributive law of "∗" over "+" hold. Let (S,+, ∗) is
an LA-semiring with left additive identity equal to 0S and left multiplicative identity equal to
1, non-empty set M is called an LA-semimodule over S if 1) (M,+) is an LA-semigroup with
left identity, 2) the map S × M → M, (s,m) 7→ sm where s ∈ S and m ∈ M satisfies i)
s(m+n) = sm+ sn, ii) (r+ s)m = rm+ sm, iii) r(sm) = s(rm), iv) 1∗m = m, for all r, s ∈ R,
and m,n ∈ M . Then, we investigate the basic properties and the Isomorphims Theorem for
LA-semimodule over LA-semiring.
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1 Introduction

The concept of AG-groupoid is a generalization of commutative semigroup concept without
associative law that introduced by [4]. A grupoid S is called AG-groupoid if its element satisfy
the left invertive law i.e (ab)c = (cb)a for all a, b, c ∈ S. In [1], AG-groupoid is also known as
left almost semigroup (LA-semigroup). A groupoid G is called medial if G satisfy the medial
law i.e (ab)(cd) = (ac)(bd) for all a, b, c, d ∈ G. A groupoid G is called paramedial if satisfy the
paramedial law i.e (ab)(cd) = (db)(ca) for all a, b, c, d ∈ G [1]. An LA-semigroup S always satisfies
the medial law [[1], Lemma 1.1(i)] while an LA-semigroup S with left identity e always satisfies
the paramedial law [[1], Lemma 1.2 (ii)]. An LA-semigroup S with left identity e also satisfies
a(bc) = b(ac) for all a, b, c ∈ S [[6], Lemma 4].

Theworks of [3] and [5] extend the notion of LA-semigroup into LA-group. AnLA-semigroup
G is called an LA-group if there exists left identity e ∈ G such that ea = a for all a ∈ G and for all
a ∈ G there exists a−1 ∈ G such that a−1a = aa−1 = e. Then, [8] give the properties of cancellative
LA-semigroup. An element a of an LA-semigroup S is called left cancellative if ax = ay implies
x = y for all x, y ∈ S. Similarly, an element a of an LA-semigroup S is called right cancellative if
xa = ya imples x = y for all x, y ∈ S. An element a of an LA-semigroup S is called cancellative if
it is both left and right cancellative. An LA-semigroup S is called left cancellative if every element
of S is left cancellative. Similarly, an LA-semigroup S is called right cancellative if every element
of S is right cancellative and it is called cancellative if every element of S is cancellative. A finite
cancellative LA-semigroup is an LA-group [8].

In 2011, [9] extended LA-group to a non-associative structure with respect to both binary op-
erations ′+′ and ’·’ namely left almost ring (LA-ring). A left almost ring means a nonempty set R
with at least two element such that (R,+) is an LA-group, (R, ·) is an LA-semigroup and both left
and right distributive laws hold.

Next, [10] extended LA-group and LA-ring concept to LA-module. Let (R,+, ·) be an LA-ring
with left identity 1. An LA-group (M,+) is called an LA-module over R, if the map R×M →M
is defined (r,m) 7→ rm ∈ M , and where r ∈ R and m ∈ M satisfies : r(m1 +m2) = rm1 + rm2 ,
(r1 + r2)m = r1m+ r2m, r1(r2m) = r2(r1m), 1 ·m = m, for all r, r1, r2 ∈ R andm,m1,m2 ∈M .

Semiring S is a non-empty set with two binary operation that satisfy (S,+) is monoid com-
mutative, (S, ·) is semigroup, both left and right distributive laws hold [2]. Then, [2] give the
definition of semimodule over semiring and some property of it. After that, [7] extend LA-ring
and semiring into LA-semiring. In this paper, we will generalize LA-module over LA-ring into
LA-semimodule over LA-semiring. Then, we investigate the properties of LA-semimodule over
LA-semiring, along with all that associated with LA-semimodule.

2 Result and Discussion

2.1 LA-Semimodule

In this section, we give the definition of an LA-semimodule over an LA-semiring. we study
some examples of LA-semimodule and discuss the elementary properties of an LA-semimodule.

Definition 2.1 ([7]). A left almost semiring (LA-semiring) is a non empty set S with two binary opera-
tions ” + ” and ” ∗ ” that satisfying the following conditions:
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i. (S,+) is an LA-semigroup.

ii. (S, ∗) is an LA-semigroup.

iii. Both left and right distributive laws holds:
x ∗ (y + z) = x ∗ y + x ∗ z
(y + z) ∗ x = y ∗ x+ z ∗ x
for all x, y, z ∈ S.

In this paper, all LA-semiring S are LA-semiring with left additive identity equal to 0S and left
multiplicative identity equal to 1.

Example 2.1. Here some examples of LA-semiring:

i. All LA-ring are LA-semiring.

ii. Let S = Zn, n ∈ N and define binary operation

	 : S × S → S

(a, b) 7→ a	 b = b− a,

and

∗ : S × S → S

(a, b) 7→ a ∗ b = ab.

Note that for any a, b, c ∈ S, we have

(a	 b)	 c = c− b+ a

= a− b+ c

= (c	 b)	 a.

So, (S,	) is an LA-semigroup. Furthermore, note that

(a	 b)	 c = c− b+ a 6= c− b− a = a	 (b	 c)

and

a	 b = b− a 6= a− b = b	 a.

Hence, (S,	) is not a commutative semigroup. Since (S, ∗) is a commutative monoid then (S, ∗) is
an LA-semigroup. Next, note that

(a	 b)c = (b− a)c = bc− ac = ac	 bc
a(b	 c) = a(c− b) = ac− ab = ab	 ac

for any a, b, c ∈ S. Therefore, (S,	, ∗) is an LA-semiring.
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Definition 2.2. Let (S,+, ∗) be an LA-semiring. A setM is called LA-semimodule over LA-semiring S
if satisfies:

i. (M,+) is an LA-semigroup with left identity.

ii. Defined map · : S ×M →M where (r,m) 7→ rm, r ∈ S,m ∈M and satisfies:

(a) r(m+ n) = rm+ rn

(b) (r + s)m = rm+ sm

(c) r(sm) = s(rm)

(d) 1 ·m = m, for all r, s ∈ S andm,n ∈M .

In this paper, all LA-semimoduleM are LA-semimodule with left identity equal to 0M .

Example 2.2. Here some examples of LA-semimodule:

i. All LA-module over LA-ring R are LA-semimodule over R.

ii. All LA-semiring S are LA-semimodule over itself.

Theorem 2.1. Let (M,+) be a cancellative LA-semimodule over LA-semiring (S,+, ∗). Then, for all
s ∈ S and a ∈M satisfies:

i. s · 0M = 0M

ii. 0S · a = 0M

Proof. Let a be an arbitrary element in M and s be an arbitrary element in S, then the following
conditions are hold:

i. SinceM is an LA-semimodule with left identity 0M then

s · 0M = s(0M + 0M )⇔ s · 0M = s · 0M + s · 0M
⇔ 0M + s · 0M = s · 0M + s · 0M

sinceM is cancellative then 0M = s · 0M .

ii. Since S is an LA-semiring with left additive identity 0S then

0S · a = (0S + 0S)a⇔ 0S · a = 0S · a+ 0S · a
⇔ 0M + 0S · a = 0S · a+ 0S · a

sinceM is cancellative then 0M = 0S · a.
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2.2 LA-Subsemimodule

In this section, we give the definition of an LA-subsemimodule of LA-semimodule. Then, we
initiate the following definition.

Definition 2.3. Let M be an LA-semimodule over LA-semiring S and N be a non empty subset of M .
LA-subsemigroup N is called LA-subsemimodule over S, if SN ⊆ N , i.e , sn ∈ N , for all s ∈ S and
n ∈ N .

Remark 2.1. LetM be an LA-semimodule over LA-semiringS. ThenM it self and {0} are LA-subsemimodule
over LA-semiring S and its called improper LA-subsemimodule.

Corollary 2.1. LetM be a cancellative LA-semimodule over LA-semiringS andN be an LA-subsemimodule
ofM . Then, N cancellative and 0M ∈ N .

Proof. The first statement is clear. The second statement, let a be an arbitrary element inM . Since
N is an LA-subsemimodule of M and M is a cancellative LA-semimodule then 0M = 0S · a ∈
N .

Theorem 2.2. LetM be a cancellative LA-semimodule over LA-semiring S. IfNi are LA-subsemimodule

ofM for i = 1, 2, 3, ..., n, then
n⋂

i=1

Ni is an LA-subsemimodule ofM .

Proof. Since Ni is an LA-subsemimodule then 0M ∈ Ni for all i = 1, 2, 3, . . . , n. Hence,
n⋂

i=1

Ni 6= ∅.

Clear that
n⋂

i=1

Ni ⊆ M . Let a, b ∈
n⋂

i=1

Ni, then a, b ∈ Ni for all i = 1, 2, 3, . . . , n. Since Ni are an

LA-subsemimodule, then a + b ∈ Ni and sa ∈ Ni for all s ∈ S, i = 1, 2, . . . , n. As a consequence

sa ∈
n⋂

i=1

Ni. Hence
n⋂

i=1

Ni also an LA-subsemimodule ofM .

Theorem 2.3. Let M be an LA-semimodule over LA-semiring S. If Ni are a subsemimodule of M for

i = 1, 2, . . . , n, then
n∑

i=1

Ni is a subsemimodule.

Proof. Since Ni is an LA-subsemimodule then Ni 6= ∅ for all i = 1, 2, 3, . . . , n. As a consequence
n∑

i=1

Ni 6= ∅ and
n∑

i=1

Ni ⊆M . Let a, b ∈
n∑

i=1

Ni where a = a1 + a2 + ...+ an and b = b1 + b2 + ...+ bn

with ai, bi ∈ Ni for all i = 1, 2, 3, . . . , n. Since Ni are LA-subsemimodule, then we have

a+ b = (a1 + a2 + ...+ an) + (b1 + b2 + ...+ bn)

= ((a1 + ...+ an−1) + an) + ((b1 + ...+ bn−1) + bn)

= ((a1 + ...+ an−1) + (b1 + ...+ bn−1)) + (an + bn)

= ((a1 + ...+ an−2 + an−1) + (b1 + ...+ bn−2) + bn−1) + (an + bn)

= ((a1 + ...+ an−2 + (b1 + ...+ bn−2)) + (an−1 + bn−1) + (an + bn)

= (((a1 + b1) + (a2 + b2)) + ...) + (an + bn)

= (a1 + b1) + (a2 + b2) + ...+ (an + bn).
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Since ai + bi ∈ Ni then a + b ∈
n∑

i=1

Ni. Hence,
n∑

i=1

Ni is an LA-subsemigroup. Next, let s be an

arbitrary element in S, then

sa = s(a1 + a2 + ...+ an) = sa1 + sa2 + . . .+ san ∈
n∑

i=1

Ni.

Hence
n∑

i=1

Ni also LA-subsemimodule ofM .

Definition 2.4. LetM be an LA-semimodule over LA-semiring S and N is an LA-subsemimodule ofM .
M/N = {a+N : a ∈M} is called a quotient LA-semimodule.

Note that the binary operation in quotient LA-semimodule M/N are ′+′ and ’·’. Since M is
medial then we have

(a+N) + (b+N) = (a+ b) + (N +N)

= (a+ b) +N.

SinceM is an LA-semimodule over S, and N is an LA-subsemimodule then

s(a+N) = sa+ sN = sa+N.

SinceM contains left identity andM satisfy medial law then

N + (a+N) = (0 +N) + (a+N) = (0 + a) + (N +N) = a+N.

For any a+N, b+N ∈M/N and s ∈ S. Hence, N is left identity element inM/N .

Proposition 2.1. Let M be an LA-semimodule over LA-semiring S and N be an LA-subsemimodule of
M . IfM is cancellative thenM/N is cancellative.

Proof. Let a+N, b+N and c+N be arbitrary elements inM/N then

(a+N) + (c+N) = (b+N) + (c+N)⇒ (N +N) + (c+ a) = (N +N) + (c+ b)

⇒ N + (c+ a) = N + (c+ b)

⇒ (0 +N) + (c+ a) = (0 +N) + (c+ b)

⇒ (0 + c) + (N + a) = (0 + c) + (N + b)

⇒ c+ (N + a) = c+ (N + b)

⇒ N + a = N + b

⇒ (0 +N) + a = (0 +N) + b

⇒ (a+N) + 0 = (b+N) + 0

⇒ (a+N) = (b+N).

Thus, M/N is right cancellative. Since M/N is an LA-semigroup with left identity then M/N is
left cancellative too. Therefore,M/N is cancellative.

2.3 LA-Semimodule Homomorpishm

In this section, we give the definition of LA-semimodule homomorpishm and its basic properties.
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Definition 2.5. LetM,M ′ be LA-semimodule over LA-semiring S. A map ϕ : M → M ′ is called LA-
semimodule homomorpishm if for any s ∈ S andm,n ∈M , satisfies the following conditions:

i. ϕ(m+ n) = ϕ(m) + ϕ(n)

ii. ϕ(sm) = sϕ(m)

Corollary 2.2. Let M,M ′ be LA-semimodule over LA-semiring S and map ϕ : M → M ′ be an LA-
semimodule homomorphism. IfM andM ′ are cancellative then ϕ(0M ) = 0M ′ .

Proof. Let a be an arbitrary element inM and x ∈M ′ where x = ϕ(a), then

ϕ(a) = x⇔ 0Sϕ(a) = 0S · x
⇔ ϕ(0S · a) = 0M ′

⇔ ϕ(0M ) = 0M ′ .

Remark 2.2 ([8]). LA-semigroupM is an LA-group iffM is finite cancellative.

Lemma 2.1. LetM,M ′ be finite cancellative LA-semimodule over LA-semiring S and map ϕ :M →M ′

be an LA-semimodule homomorphism. If M and M ′ are finite cancellative then ϕ(−a) = −ϕ(a) for all
a ∈M .

Proof. Let a be an arbitrary element inM . SinceM is finite cancellative then there exist −a ∈ M
such that −a + a = 0M . Since ϕ is LA-semimodule homomorphism andM ′ is finite cancellative
then

ϕ(−a+ a) = ϕ(0M )⇔ ϕ(−a) + ϕ(a) = 0M ′

⇔ ϕ(−a) + ϕ(a)− ϕ(a) = 0M ′ − ϕ(a)
⇔ ϕ(−a) = −ϕ(a).

Theorem 2.4. LetM,M ′ be cancellative LA-semimodule over LA-semiring S and map ϕ : M → M ′ be
an LA-semimodule homomorpishm, then the following conditions are holds:

i. If P is an LA-subsemimodule ofM , then ϕ(P ) is an LA-subsemimodule ofM ′.

ii. If Q is an LA-subsemimodule ofM ′, then ϕ−1(Q) is an LA-subsemimodule ofM .

Proof. Note that

ϕ(P ) = {x ∈M ′ |x = ϕ(a), a ∈ P}
ϕ−1(Q) = {a ∈M |ϕ(a) ∈ Q}.

Then, consider that
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i. Since P is an LA-subsemimodule and ϕ is an LA-semimodule homomorphism then P 6= ∅
and ϕ(P ) 6= ∅. Clear that ϕ(P ) ⊆ M ′. Let x, y be two arbitrary elements in ϕ(P ) where
x = ϕ(a), y = ϕ(b), a, b ∈ P then x + y = ϕ(a) + ϕ(b) = ϕ(a + b). Since P is an LA-
subsemimodule then a+ b ∈ P . Hence, x+ y ∈ ϕ(P ) and ϕ(P ) is an LA-subsemigroup. Let
s be an arbitrary element in S, then sx = sϕ(a) = ϕ(sa). Since P is an LA-subsemimodule
then sa ∈ P . So, sx ∈ ϕ(P ). Therefore, ϕ(P ) is an LA-subsemimodule ofM ′.

ii. SinceQ is an LA-subsemimodule ofM ′ andM ′ is a cancellative LA-semimodule then 0M ′ ∈
Q. Hence, 0M ′ = ϕ(a) implies a = 0M , then ϕ−1(Q) 6= ∅. Clear that ϕ−1(Q) ⊆M . Let a, b be
two arbitrary element in ϕ−1(Q), then ϕ(a + b) = ϕ(a) + ϕ(b) ∈ Q. Hence, a + b ∈ ϕ−1(Q)
and ϕ−1(Q) is an LA-subsemigroup. Let s ∈ S then ϕ(sa) = sϕ(a). Since ϕ(a) ∈ Q and Q is
an LA-subsemimodule then sϕ(a) ∈ Q. Therefore, ϕ−1(Q) is an LA-subsemimodule ofM .

Definition 2.6. Let ϕ : M → M ′ be an LA-semimodule homomorpishm. Kernel of ϕ is defined by
Ker(ϕ) = {m ∈M : ϕ(m) = 0} and image of ϕ is defined by Im(ϕ) = {ϕ(m) : m ∈M}.

Lemma 2.2. Let M,M ′ be cancellative LA-semimodule over LA-semiring S and map ϕ : M → M ′

be an LA-semimodule homomorpishm, then Ker(ϕ) and Im(ϕ) are LA-subsemimodule of M and M ′,
respectively.

Proof. Since ϕ(0M ) = 0M ′ then Ker(ϕ) 6= ∅. Clear that Ker(ϕ) ⊆ M . Let a, b be two arbitary
element in Ker(ϕ) then ϕ(a + b) = ϕ(a) + ϕ(b) = 0M ′ . Hence, a + b ∈ Ker(ϕ) and Ker(ϕ) is an
LA-subsemigroup ofM . Let s be an arbitary element in S, then ϕ(sa) = sϕ(a) = s · 0M ′ = 0M ′ .
Therefore, sa ∈ Ker(ϕ) andKer(ϕ) is an LA-subsemimodule ofM .

Next, since ϕ(0M ) = 0M ′ , then Im(ϕ) 6= ∅. Clear that Im(ϕ) ⊆ M ′. Let x, y be two arbitary
element in Im(ϕ) where x = ϕ(a), y = ϕ(b), a, b ∈ M then x+ y = ϕ(a) + ϕ(b) = ϕ(a+ b). Since
a + b ∈ M then x + y ∈ Im(ϕ) and Im(ϕ) is an LA-subsemigroup of M ′. Let s be an arbitrary
element in S then sx = sϕ(a) = ϕ(sa). SinceM is an LA-subsemimodule then sa ∈ M . Hence,
sx ∈ Im(Φ) and Im(Φ) is an LA-subsemimodule ofM ′.

Proposition 2.2. LetM,M ′ be finite cancellative LA-semimodule over LA-semiring S and map ϕ :M →
M ′ be an LA-semimodule homomorpishm. Map ϕ is one-one if and only ifKer(ϕ) = {0M}.

Proof. (⇒) Let a be an arbitrary element inKer(ϕ), then ϕ(a) = 0M ′ . SinceM,M ′ are cancellative
LA-semimodule and ϕ is an LA-semimodule homomorphism then ϕ(0M ) = 0M ′ . Since ϕ is one-
one and ϕ(a) = 0M ′ = ϕ(0M ), then a = 0M . Finally, ker(ϕ) = {0M}.

(⇐) Let Ker(ϕ) = {0M} and a, b be two arbitrary elements in M such that ϕ(a) = ϕ(b). Since
M,M ′ are finite cancellative LA-semigroup, then M,M ′ are LA-group. Hence, ϕ(a) = ϕ(b) im-
plies ϕ(a) − ϕ(b) = 0M ′ . Since ϕ is an LA-semimodule homomorpishm, then ϕ(a − b) = 0M ′ .
Hence, a − b ∈ Ker(ϕ). Since Ker(ϕ) = {0M} then a − b = 0M . As consequence, a = b. So, ϕ is
one-one.

2.4 Isomorpishm Theorem for LA-Semimodule

In this section, wediscuss about the isomorphism theorem inLA-semimodule over LA-semiring.
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Theorem 2.5. LetM,M ′ be finite cancellative LA-semimodule over LA-semiring S, θ : M → M ′ be an
LA-semimodule epimorphism, and µ : M → M/Ker(θ) be a natural LA-semimodule homomorphism.
Then, there exist an LA-semimodule isomorphism σ : M/N → M ′, where N = Ker(θ) and make the
diagram below commute.

Proof. SinceM,M ′ is a cancellative LA-semimodule and θ is an LA-semimodule homomorphism
then N = Ker(θ) is an LA-subsemimodule ofM . Therefore,M/N is a quotient LA-semimodule.
Next, consider the mapping

σ :M/N →M ′

a+N 7→ σ(a+N) = θ(a) = a′.

Then, we will show that σ is an isomorphism. Note that,

i. First, we will show that the mapping is well defined. SinceM andM ′ are finite cancellative
LA-semimodule then M/N is a finite cancellative quotient LA-semimodule. Hence, M/N
and M ′ are LA-semigroup. Let a + N, b + N be two arbitrary elements in M/N such that
a+N = b+N , then

a+N = b+N ⇒ a− b+N = N

⇒ a− b ∈ N
⇒ θ(a− b) = 0

⇒ θ(a)− θ(b) = 0

⇒ θ(a) = θ(b)

⇒ σ(a+N) = σ(b+N).

Thus σ is well defined.

ii. Let a+N and b+N be two arbitrary elements ofM/N such that σ(a+N) = σ(b+N), then

σ(a+N) = σ(b+N)⇒ θ(a) = θ(b)

⇒ θ(a)− θ(b) = 0

⇒ θ(a− b) = 0

⇒ a− b ∈ N
⇒ a− b+N = N

⇒ a+N = b+N.

Therefore, σ is one-one.
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iii. Next we will show that σ is onto. Let a′ be an arbitary element ofM ′. Since θ is an epimor-
phism fromM toM ′, then there is an element a inM such that θ(a) = a′. Since θ(a) being
the σ-image of the coset a+N inM/N , then a′ = θ(a) = σ(a+N). Thus, σ is onto.

iv. Finally, σ is an LA-semimodule homomorpishm, i.e

(a) Let a+N, b+N be two arbitrary elements inM/N then

σ[(a+N) + (b+N)] = σ[(a+ b) +N ]

= θ(a+ b)

= θ(a) + θ(b)

= σ(a+N) + σ(b+N).

(b) Let a+N be an arbitrary element inM/N and s be an arbitrary element in S then

σ[s(a+N)] = σ(sa+N)

= θ(sa)

= sθ(a)

= sσ(a+N).

Hence, σ is an LA-semimodule isomorpishm fromM/N toM ′ orM/N ∼=M ′.

Theorem 2.6. Let M be a finite cancellative LA-semimodule over LA-semiring S. If I and J are LA-
subsemimodule ofM , then I+J

J
∼= I

I∩J .

Proof. Since I and J are LA-subsemimodule ofM , then I+J is an LA-subsemimodule ofM . Since
J ⊆ I + J and J is an LA-subsemimodule, then I+J

J is a quotient LA-semimodule. Since I and
J are LA-subsemimodule, then I ∩ J is an LA-subsemimodule. Since I ∩ J ⊆ I , then I

I∩J is a
quotient LA-semimodule. Next, define a mapping

θ : I → I + J

J
a 7→ θ(a) = (a+ 0) + J = a+ J.

We will prove this theorem by using Theorem 2.5, then note that

i. Clear that ϕ is well defined. Let a, b be two arbitrary elements in I and s be an arbitrary
element in S, then

(a) θ(a+ b) = (a+ b) + J = (a+ J) + (b+ J) = θ(a) + θ(b).
(b) θ(sa) = (sa) + J = s(a+ J) = sθ(a).

Thus, θ is an LA-semimodule homomorpishm. Next, note that for any a + J ∈ I+J
J , then

exists a ∈ I such that θ(a) = a+ J . Therefore, θ is an onto homomorpishm.

ii. Since J is a left identity in quotient LA-semimodule I+J
J , then

Ker(θ) = {a ∈ I : θ(a) = J}
= {a ∈ I : a+ J = J}
= {a ∈ I : a ∈ J}
= {a ∈ I ∩ J}
= I ∩ J.
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Since θ is an LA-semimodule epimorphism, Ker(θ) = I ∩ J andM is finite cancellative then by
Theorem 2.5 we have I+J

J
∼= I

I∩J .

Theorem 2.7. Let M be a finite cancellative LA-semimodule over LA-semiring S. If J and K are LA-
subsemimodule ofM , where J ⊆ K, then M/J

K/J
∼= M

K .

Proof. Clear that M/J , M/K and K/J are quotient LA-semimodule over S. Since K ⊆ M then
K/J ⊆M/J . Hence,K/J is anLA-subsemimodule ofM/J and M/J

K/J is an quotient LA-semimodule.
Define a mapping

θ :M/J →M/K

a+ J 7→ θ(a+ J) = a+K.

Then, note that

i. SinceM is cancellative thenM/J andM/K are cancellative. Hence, θ(J) = K implies θ is
well defined. Then, we will show that θ is an LA-semimodule homomorphism

(a) For any a+ J, b+ J ∈M/J , we have

θ[(a+ J) + (b+ J)] = θ[(a+ b) + J ]

= (a+ b) +K

= (a+K) + (b+K)

= θ(a+ J) + θ(b+ J).

(b) For any a+ J ∈M/J and s ∈ S, we have

θ[s(a+ J)] = θ(sa+ J)

= sa+K

= s(a+K)

= sθ(a+ J).

Hence, θ is an LA-semimodule homomorpishm.
Furthermore, since J ⊆ K then for any a + K ∈ M/K, we can choose a + J ∈ M/J such
that θ(a+ J) = a+K. Thus, θ is an epimorphism.

ii. We will show thatKer(θ) = K/J , then consider that

Ker(θ) = {a+ J ∈M/J : θ(a+ J) = K}
= {a+ J ∈M/J : a+K = K}
= {a+ J ∈M/J : a ∈ K}
= {a+ J ∈ K/J} = K/J.

Now, since θ is an LA-semimodule epimorphism, Ker(θ) = K/J and M/J,M/K are finite can-
cellative, then by Theorem 2.5 we have M/J

K/J
∼= M

K .
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3 Conclusions

Any LA-semimodule over LA-semiring are satisfy The First Isomorphism Theorem, The Sec-
ond Isomorphism Theorem and The Third Isomorphism Theorem. Also, LA-semimodule over
LA-semiring are satisfy some properties like properties of module over ring.
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